
Scalable Android Application Repackaging Detection

Amirhossein Gharib and Ali A. Ghorbani
Faculty of Computer Science, University of new Brunswick

.

App’s Graph Generation

ABSTRACT
In recent years, as mobile smart device sales grow quickly, the development of mobile applications keeps accelerating, so does mobile app repackaging. Attackers can

easily repackage an app and embed advertisements to earn money or modify a popular app by inserting malicious payloads into the original app. We propose a user

interface based approach to mobile app repackaging detection. Android apps are user interaction intensive and event dominated, and the interactions between users and

apps are performed through user interface, or views. In this work, we construct a graph for each app which represent possible users' navigation behavior across app views.

Our system can detect repackaged apps at a large scale, both effectively and efficiently. Our experiments also show that the false positive and false negative rates are both

very low.

Problem Statement

The most fundamental challenge of app

repackaging detection is to find features to

characterize apps accurately. Plagiarists and

malware writers tend to use obfuscation on

the repackaged apps to evade detection.

First challenge is to design a detection

scheme that is resilient against code

obfuscation techniques. Second challenge is

to build a detection tool that can perform

detection in large scale scenarios.

What is repackaging?

Due to the structure of Android apps,

attackers can easily decompile an app and

get the source code. After modifying and

adding malicious codes, they compile the app

and distribute the repackaged app through

different markets.

Types of Attacks

 Lazy attacks: Simple changes such as

different author name or different

advertisement to earn credit.

 Amateur attacks: Adds, deletes and

changes a small part of the app behaviour

then applies automatic code obfuscation.

 Malware attacks: Adding malicious

payload to the popular legitimate app to

create a malicious app.

System Architecture

Measure 

Graph 

Similarity

Decompile 
and

Extract Code

Smali Code 
& Res files

CodeView 
Graph

Generate 
Graph

App 1

Decompile 
and

Extract Code

Smali Code 
& Res files

CodeView 
Graph

Generate 
Graph

App 2

Si
m

ila
ri

ty
 S

co
re

Our static user interface based detection

method is:

 Resilient to various obfuscation

techniques.

 Fast and Efficient for large scale

experiments.

 Accurate with low false matches.

Future Work

Conclusion

 Add more features to Graph to

reduce false matches.

 Adopt Big Data techniques to

reduce overall execution time.

 Add a layer of dynamic

analysis after the static one to

reduce false positives and

increase accuracy.

System Evaluation

True Positive 1093 Sensitivity 96.98%

True Negative 165143 Specificity 99.98%

False Positive 22 Precision 98.02%

False Negative 34 Accuracy 99.96%

We extract these information from Smali code and

resource files:

1. Nodes: Collect all the activities that are

associated with potential UI views. Each

activity represents a Node.

2. Node Features: Number, types and layout of

the visible components.

3. Edges: Represents the activity switch

relationship among the set of views.

Figure 4. Left graph represents a legitimate app while

the right one shows the app after an amateur attack.

Figure 1. Repacking Cycle

Figure 2. Repackaging Motivations and attacks

Figure 3. Shows the system architecture of our approach, which has three primary components. Given two Android apps in .apk format,

the Code Extractor will extract and produce the Smali code and Resource files. After that, the Graph Constructor performs some static

analysis to generate a graph for each app. Then, the Graph Similarity component compares two graphs and calculates a similarity score.

Table 1. True/False Matches and Accuracy using

729 labeled repackaged apps

Figure 5. Ratio of repacked apps to all apps for five

families in a Ransomware dataset captured from

markets.


